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Multimatrix models induced by group extensions 
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Freiburg, Federal Republic of Germany 

Received 8 June 1992 

Abslraci Muliimatrix models for which the index sei has a group svuclure and 
the hieraction obeys a ‘zero cuwature’ condition can be deformed related to central 
extensions of this group. The deformed muliimatrix models lead to statistical sysiems 
defined on random graphs with a topological action. It is shown, how these topological 
theories on graphs can be used to weight graphs according io topological conditions. 

1. Introduction 

Hermitian multimatrix models generate summations over graphs with a weight which 
can be interpreted as the partition function of a statistical model on this graph (see 
e.g. 11-71). ’hking a special limit of the coupling constants towards critical points, 
and for the size N of the matrices to infinity-the so-called ‘double sealing limit’ 
[SI-leads to theories which describe matter coupled to two-dimensional quantum 
gravity. The type of matter (its central charge as well as the operator content of the 
fields) in general depends on the multimatrix model. 

The special relation between Hermitian matrix integration and two-dimensional 
quantum gravity stems from the fact that the perturbation expansion of matrix models 
leads to the summation over Feynman graphs which have a natural interpretation as 
triangulations of two-dimensional surfaces, at least if restricted to Feynman graphs 
without self-loops or multilines (several lines connecting the same pair of vertices), 
which can usually be realized by a renormalization of the coupling constants. There 
have been attempts to use a similar formalism to generate triangulations of higher 
dimensional manifolds leading to regularized versions of higher dimensional quantum 
gravity. This can be achieved by using integrals over multi-indexed (tensor) objects 
19-111. One problem with this approach is that one has to !ix the topology of the 
triangulations as otherwise the number of triangulations grows faster than exponential 
with the volume. The size of the multi-indexed quantities generalizing Hermitian 
matrices can be used to weight graphs according to the Euler number. This might 
not be enough, however, to guarantee the exponential growth. For odd dimensional 
manifolds without boundaly the situation is even wane as the Euler number is 
always zero, a condition which has to be fulfilled by the graphs corresponding to 
triangulations. Hence it would be desirable to generate triangulations with weights 
such that other topological properties of graphs can be tuned. 

In this paper we describe a mechanism that can be used to restrict the class of 
graphs occurring in the perturbation expansion according to topological properties. 
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This is achieved in two steps. First, we shall introduce topological actions for random 
graphs. This idea is closely related to a recent work by Dijkgraaf and Witten [13] and 
uses central extensions of groups. Next we show how these topological actions can be 
generated from twisted multimatrix models (a very brief and preliminary presentation 
without any proofs of the results has been given in [14]). All the matrix models under 
consideration will involve arbitraty N x N complex matrices with certain Hermiticity 
conditions. Although the described mechanism leads to topological actions for two- 
dimensional triangulations, the general idea might also be applicable for other cases. 

Section 2 will review the notion of group extensions. Then we describe (section 
3) the construction of topological actions on graphs using the cocycles of central 
extensions. The twisting of multimatrix models and hence the generating functional 
for statistical systems with topological actions on random graphs will be discussed in 
chapter 4. One main example will be the topological action induced by the Heisenberg 
group, ie. central extensions of the group of twodimensional translations. This 
example will be described in section 5. One of the possible applications of topological 
actions on graphs will be the cancellation of graphs with special properties. An 
example is discussed in section 5. 

2. Group extensions 

The construction of topological actions and twisted multimatrix models is based on 
central group extensions. We first review the basic structure and fix the notation: A 
group E is called an extension of a group G by a group H if there exists an exact 
sequence 

l - H + E - G + l .  (1) 
This implies that H is a normal subgroup of E, i.e. the quotient EM is isomorphic 
to a group G. We denote by 01 : G - E a set of representatives of the equivalence 
classes of E. Any element y E E can be written as the representative a ( g )  of the 
equivalence class of y multiplied by an element in H y = h n ( g ) .  Choosing such a 
decomposition for the elements in E one obtains for the product 

(2) 
h l a ( g l ) h z 4 g z )  = h,(a(sl)h201(sl)-i)01(gl)01(g2) 

= h , s , , ( h , ) c ( g , ,  S t ) a ( g l g , ) .  

As H is a normal subgroup one has s , (h)  := a ( g ) h a ( g ) - l  E H. c ( g l . g 2 )  dcfines a 
mapping from G x G into H. In the following we shall assume that the extension is 
central, Le. H is Abelian and in the centre of E. This implies especially ss( h)  = h. 

The associativity of the product in E leads to a (multiplicative) cocycle condition 
on c ( g l , g 2 ) :  

C b l 9  9 2  1 c(g1 gz 3 9 3 )  = c(g1 I g293 Ic(s2 9 93 1 (3) 

and we shall refer to c(gl, g 2 )  as cocycles. The existence of non-trivial cocycles is a 
condition on the second cohomology goup on G. It will turn out to be convenient 
to represent the elements in E by pairs of elements in H and G. The multiplication 
will be written as 

( h i , g i ) ( h 2 , g 2 )  = (hih2c(gi,g,),g,g2)hi,c(gi,gz) E H  glqgz E G. (4) 
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For most applications in the following we shall take G and H to be finite. 

of H implies 
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Choosing the identity element in E as the representative of the equivalence class 

c ( g , e G )  = C ( e G , g )  = eH (9 
(eH,eG being the units in H and G respectively). If g and g-l belong to different 
equivalence classes one can also require that Cu(g-’) = a ( g ) - ’ ,  i.e. 

c ( g , g - L )  = eH. (6) 

This is in general not possible for involutions in G, i.e. elements for which gz  = eG. 
In the following we shall consider only central extensions for which condition (6) can 
be imposed. 

Finally, we define a ‘trace’ mapping from E into the complex numbers by 

t r ( h . g )  = f ~ 6 ( g )  

where 

1 i f g = e G  
else. 

The ‘hat’ denotes a one-dimensional complex representation of H. 

3. Topological actions for statistical models on graphs 

The cocycle condition (3) has a simple graphical representation (figure 1) which 
resembles the Bip moves used in the generation of triangulations of two-dimensional 
surfaces 11,541 (figure 2). It is known that these moves are ergodic (at least for 
the planar case) [4], i.e. any two biangulations with the same number of triangles 
can be converted into each other by these flip moves. On the other hand, if the 
action of a statistical model on a graph-corresponding to a triangulation of a 
two-dimensional surface-happens to be invariant under these flip operations the 
corresponding partition function only depends on the topology of the surface, i.e. the 
Euler characteristic Such an action is called a (two-dimensional) topological action. 

919193 ,A 919293 

Figure 1. Graphical representation of the associaliviiy condition for the oocycles. 
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Figure Z "he flip to generate triangulations: (a) for the graphs of degree 3, (6) for the 
triangulation (dual of a graph of degree 3). 

In this section we shall describe how the cocycles of central group extensions 
can be used to construct topological actions. First, we shall consider the case of 
(two-dimensional) triangulations, i.e. the dual graph is regular of degree three (each 
vertex has three hooks). Later we generalize these concepts to arbitrary graphs. It 
should be noted that the graphs under consideration have a natural cyclic ordering of 
the lines around each vertex In matrix models-which will be the examples studied 
later-this ordering is inherent in the Feynman graphs generated (see e.g. [12]). For 
a given embedding of a graph into a twodimensional surface this cyclic ordering is 
also fixed. 

The statistical models with topological actions are defined as follows: degrees of 
freedom are the elements of a group G which are attached to the lines of a directed 
graph. This defines also group variables for the hooks at each vertex where we take 
the convention that for an outgoing line the inverse group element is to be taken. An 
allowed configuration is subject to the condition that at each vertex the product of 
the group variables should be the identity element. This definition resembles vertex 
models in the sense that degrees of freedom are attached to the lines of a graph with 
constraints at the vertices. On the dual graph (triangulation) the constraint becomes 
a zero curvature condition around each triangle [13]. 

Given a configuration of group elements on the lines of a graph satisfying the 
constraint one can attach the cocycle c(gl, g2) of a central extension of G as a weight 
to each vertex (figure 3(u)), where g1 and g2 are two of the three group elements in 
cyclic order around this vertex. The cocycle condition (3) and the normalization (6) 
ensure that this assignment is cyclic: 

c(g,,gz) = c(s2,(g,sz)-') = C((gl!?2)-l,gl). (9) 

The total weight for a configuration on a graph is the product of the cocycles (in a 
one-dimensional representation of H) at each vertex 

This action is invariant under the flip moves because of the cocycle condition (3), 
so it depends only on the genus of the surface in which the graph is embedded. In 
principle it could also depend on the number of vertices as this h kept k e d  under 
the flip moves. We shall show in a more general context later (see equation (14)) 
that this is actually not the case. 

It is often convenient not to restrict oneself to regular graphs of degree 3. We now 
describe how one o n  constmct a topological action for arhitraly graphs (embedded 



Multimatrir models induced by group erlensions 1639 

(a) (*I 
Figure 3. m e  assignment of group variables lo the t ink around a vena: (U) of degree 
3. (b) of arbitrary degree. 

without intersections of lines on a two-dimensional surface of sufficiently high genus). 
Again the statistical degrees of freedom are the group elements attached to the lines 
of a directed graph with the (zero curvature) constraint that the product of group 
elements (taking into account the direction of the lines) around each vertex is the 
identity element (figure 3(b)). If g r , g z , .  , . ,gp are the group elements in cyclic order 
around a vertex, the weight attached to this vertex is 

4Is" l )  = P K e H ,  91)( e H ,  9 2 )  . . . ( e H ,  9, ) I  
(11) 

= E(g19 92)~(9lSZ 9 9 3 ) % 7 1 9 2 9 3  7 94) , . , E( K : g i  1 9, ) 6( n:= 1% 1. 
Again, as the trace is cyclic, this expression does not depend on the choice of which 
line is taken to be the firsst. The topological action for a configuration is given by the 
product of the local weights: 

The partition function is obtained by taking the sum over all possible configurations 
on the graph 

For finite central extensions the one-dimensional complex representations of the 
cocycles are phases, hence the action Stop({g}) is real. 

The definition of topological weights for graphs with vertices of arbitraly degree 
together with the normalization of the cocycles (S ) ,  (6) and the trace (7), make the 
topological action invariant under a broader class of changes of the graph: 

(i) Insertion or deletion of a line connecting two different vertices (figure 4). This 
property is the graphical equivalent of 

t r [ ( e H , g l )  " ' ( e H * g n - l ) ( e H ,  gn)] t r [ ( e H , g , ' ) ( e H , g n + l )  ' " ( e H , g n + m ) l  

= a(n,",lg;) S I )  ' '  ' ( e H ?  g m - l ) ( e H ,  g n f l )  ' ' '  ( e H ,  g n f m  11 (I4) 

which follows from 
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No cocycle factors appear, because of (6). Wis invariance of the topological action 
holds only for allowed configurations which satisfy the constraints. 

(ii) Insertion or deletion of a self-loop connecting adjacent hooks at a vertex 
(figure 5). This is also a consequence of (6) as 

(eH7g)(eH3g-') = (eH,ed. (16) 

Furthermore, for a representation of a graph in a plane (which might have 
intersections of lines) we have the invariance: 

(iu) Moving a line through a vertex in a planar representation of the graph (figure 
6). This is a trivial consequence of the fact that the product of the cocycles does not 
depend on this representation. 

Feure 4 Deletion and insertion 01 lines mnnecting two different vertices. 

Figure 5. Deletion and insertion of a self-loop without intersections. 

Figure 6. Moving a line through a rrrtex in a planar representation of the p p h .  

The first of these moves allows reduction of the graph successively to a graph 
consisting of one vertex only. The second move can be used to eliminate all self- 
loops of this one-point graph which wnnect neighbouring hooks. The product of 
cocycles essentially depends only on the intersections of the remaining lines. As a 
trivial consequence one obtains that the weight for planar diagrams without external 
lines is always one. 
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In later applications (see the discussion of the dimer and vertex model) we will 
consider statistical models defined on random graphs where not every vertex type is 
allowed but only certain classes. In some cases the constraint conditions for these 
models are less restrictive and admit groups with central extensions which in the 
general case might not exist. For such models the insertion of a line is not, in 
general, possible as it might lead to vertex types which are not allowed. If, for 
instance, the general vertex of degree 3 does not exist the invariance under flips is 
no longer guaranteed. In these cases topological properties of the embedding of a 
graph into a surface can be important. 

The notion of ‘topological action’ will also be used for actions which are only 
invariant under the restricted class of moves. However, even in cases where the 
insertion of lines will, in general, not be possible, the deletion of lines is always 
possible, so that the method of reducing the graph to a one-point graph helps to 
calculate the product of cocycles. 

4. Multimatrix models leading to topological actions 

Having fixed the notation for central extensions and elaborated the properties of 
cocycles leading to topological actions on graphs, we now describe the general 
construction of the twisted matrix models. These are multimatrix models for which 
the perturbation expansion generates statistical systems on random graphs with 
topological weights corresponding to the products of cocycles. 

Given a multimatrix model, one labels the matrices by elements of a group G 
such that 

M+(S) = M W )  (17) 

and the action becomes 

S[IM(g)Il  = C X ( g ) m M ( g - ’ ) M ( g )  + Cf(g i ,gz , . .  .)6(nigi)tr[n;M(g;)I 
g {5%} 

(18) 

where X(g) and f(gl ,  . . .) are arbitrary couplings. The non-trivial part is to find 
a group G such that the ‘momentum’ constraint n ;g i  = eG holds for every 
non-vanishing term in the interaction. This might be possible only after a linear 
transformation on the set of the matrices (see the discussion of the vertex model). 
Suppose one can find such a labelling by a group G which admits a central extension, 
then one obtains the twisted matrix model by the following replacement in (18): 

6( isi ) - UKeH, gt )( e ~ ,  9 2  1 . .I = 6( U; 1 c(g1 I 9 2  sz 9 3 )  . . (19) 

Essentially, the coupling constants get multiplied by the product of cocycle factors for 
each vertex type. 

The perturbation expansion for the free energy F per degree of freedom of the 
matrix integral 
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leads to a summation over connected graphs, where the contribution for each graph 
can he interpreted as a generalized vertex model (degrees of freedom {g} attached 
to the Iines with a 'momentum' constraint at each vertex). The statistical weight 
for this model (considered as a function of the configuration {g}) depends on 
the coupling constants f({gi}),X(gi), as in the untwisted model, and on a term 
containing products of the cocycles. 

The product of the cocycles adds a topological action to the statistical model on 
the random graphs exactly of the type of topological actions discussed in section 4. 

5. Examples and applications 

One w e  can be treated in general and is relatively trivial: if the central extension 
is an Abelian group, the topological action is always 0 for graphs without external 
lines. This follms as the commutativity allows the change of the order of outgoing 
hooks at vertices. 'Dgether with the moves described in section 3 which leave the 
topological action invariant this allows the reduction of any graph without external 
lines to a planar graph and finally to one point. 

One of the most well-known non-trivial examples for a central extension is the 
Heisenberg group. 'Eiking for G the group of two-dimensional translations Rz and 
for H the multiplicative group C - IO}, one obtains a central extension from the 
composition rule 

(21) ( z* ,a ) (%b)  = (z ,zzq o t b z - a t b t , ,  + b)  

where, in general, q is an arbitrary, futed, non-vanishing complex number. It 
easy to verify that this qdependent factor satisfies the cocycle condition (3). Finite 
dimensional representations exist for the induced extensions of translations on a 
periodic Z, x ZN lattice. In these cases q is a root of unity. Explicit representations 
can be obtained from the following N x N matrices: 

w 0 0 ". 0 0 1 0 _ ' '  0 

I . .  (22) 
0 0 0 " '  1 

0 0 0 '.. " = 1  1 0 0 " '  0 

. . . .  . .  . .  . . .  

where 

= eZri/N, 

They satisfy the relations 

PN = QN = 1 PQ = wQP. 

For the matrices 

T ( ~ , ~ )  ei*mn/N m n Q P  



Multimatrix models induced by group erlensions 1643 

ie. they form a representation of the above-mentioned extensions of ZN x ZW 
h r t h e r  relations are 

T+(m,n) = T(-n,-m) (27) 

t r T ( m , n )  = Ns(m,n ) ( s (m ,n )  := 6,,6,,). (28) 

The normalized trace is 

(29) 
1 
N t rT(m,n)  := -trT(m,n) = 6(m,n) .  

For these central extensions one can calculate the topological action, Le. the 
product of cocycle factors, in a closed form for an arbitrary graph [14]. Let 
{(mj,ni)} be the set of ‘momenta’ attached to the lines of a (directed) graph 
satisfying momentum conservation at each Yertex and let 

I’ L otherwise 

1 line j crosses line i from the right 
line j crosses line i from the left 1. .  = -1 

be the intersection matrix for a planar representation of this graph, then one obtains 

The proof follows immediately from the explicit form of the cocycles of the 
Heisenberg group after the graph has been reduced to a one-point graph. The 
topological properties of the cocycles of the Heisenberg group have been used 
implicitly in the theory of twisted reduced large N models [16,11. This result 
will now be used to discuss some examples. 

5.1. A dimer model 

We mnsider a Hermitian two-matrix model with the following action 

S, = tr M: + U @  + pltr Mf t p2tr M i  t pgtr M f M ;  t p4tr(M1M2)Z 

corresponding to the four types of vertices: 

(31) 

This model describes polygons on random graphs (regular of degree 4). The 
different couplings weight the length of the polygon, bendings and the touching of 
two polygons. For the special case p1:p2:p3:p4 = p4:1:4p2:2p2 one recovers the 
king model represented as closed polygons (see e.g. [IS]). 

’Ib obtain a twisted version of this model one has to find a group generated by 
two elements g1 and g2, satisfying the following relations: 

g: = gf = (gl!?2)2 = (32) 
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The first two of these relations are required by the quadratic part of the action. They 
also imply the constraints for the first three types of vertices. The last relation is 
required by the constraint for vertex type 4. 

One solution is G = Z2 x Zz with (multiplicative notation) g, = (-1,l)  and 
gz = (1,-1). This group has a central extension by H = {+l,-l} generated by the 
Pauli matrices Q, and a,. Following the procedure described in section 4, equation 
(19), one obtains a sign flip for p4, i.e. one can introduce an effective topological 
action which counts the number of configurations of type 4. The theorem that the 
topological weight is 1 for planar graphs states that this number is always even on 
planar graphs. 

As an example of how statistical models with topological actions can lead to 
the cancellation of graphs with certain topological properties, we consider the special 
case of couplings p 1 : p 2 : p 3 : p 4  = 1: 1: 42 .  (This case corresponds to the twisted king 
model at infinite temperature which is equal to the complex matrix model.) One can 
calculate the partition function for each graph exactly [14]: it is non-zero only for 
those graphs, for which the one-point reduced graph in a planar representation has 
the property that each h e  has an even number of intersections. (This characteristic 
is independent of the representation chosen.) 

This result is an example for the general remark in section 3 topological actions 
can depend on the kind of embedding of a graph into a WO-dimensional surface, in 
this case the property that for the one-point reduced graph in a planar representation 
each line has an even number of intersections. The dimer model (31) is formulated 
for vertices of degree 4 and the contraction of lines always leads to vertices of even 
degree. On the other hand, the invariance of the action under the splitting of a 
vertex and insertion of a line holds only, if each of the two resulting vertices have 
even degree. The constraint condition for vertices of odd degree cannot be solved 
with g, and gz only. 

As a corollary one obtains that the moves of inserting or deleting lines and self- 
loops are not ergodic on non-planar graphs if restricted to vertices of even degree. Tb 
change the property ‘each line in the planar representation of the one-point reduced 
graph has an even number of intersections’ one has to split vertices of even degree 
into vertices of odd degree. 

5.2. A your-vertex‘ model 

The statistical model corresponding to the matrix action (31) looks almost like an 
‘eight’-vertex model on random graphs, where it has to be noted that among the 
eight possible spin configurations of the eight-vertex model [19] the distinction of 
only the four following configurations makes sense on random (four valence) graphs: 

- ...._I.... + ! 

As incoming spins have to combine with outgoing spins and vice versa the action 
leading to the ‘four‘ vertex model is 

s., = trM,M2 + X,(trMf+ tr M,4) + X,U M:M: + x , ~ ~ ( M , M , ) ~ .  (33) 
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Vertex types 1 and 2 get the same weight, as this can always be achieved by a rescaling 
MI --). AM, ,& -t l/XM2. (For closed regular graphs of degree 4 the number of 
vertex types 1 and 2 always has to be equal, hence only the product of their weigh@ 
enters into the partition sum.) At first sight it looks as if this model does not have a 
non-trivial twisted version: the constraint equations for the group generators are 

SlSZ = 1 and gi = 1 (34) 

with solutions Z4 or Z2 The central extensions of these groups are always Abelian. 
However, the linear transformation 

MI = (A& + Ax,) M ,  = (& A?,) (35) 

brings (33) into the form 

S, = U h;rT - tr Q; + fil(tr &f + tr A?:) + & tr + f i3  tr( fi,&f2)2 (36) 

where the couplings are related as 

- 1 -  

- 1 -  1 -  

- 1 -  

I - 8/11 f & f i Z  + Ab3 

z - ? P I -  s/13 

3 - ;PI - : f i2  + : f i 3 .  

(37) 

This model admits a twisted version of the same type as the dimer model (31). The 
fact that one obtains a twisted model only after a linear transformation of the matrices 
reveals that one is actually using central extensions of the group algebra. 

5.3. The Hermitian matrix model 

It might be interesting to note that the Hermitian matrix model also follows from a 
twisting procedure as has been described in general in section 4. One starts with a 
model of N 2  copies of a simple integral in one real wriable: 

Thiis can be rewritten as an N x N ‘lattice’ model without any interactions between 
fields at different sites: 

A Fourier transformation for these fields, 
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leads to an action 

s = 6 ( ~ ;  (mi,  n i ) )  n + ( m i r  ni).(41) 

This is of the required type: the index set has the structure of a group (ZN x Z!,,,), and 
the momentum constraint holds at each vertex. The N-dimensional representations 
(25) are a central extension of this group. Replacing the &function in (41). by the 
normalized trace of products of T-matrices (25), one obtains 

+(-m, -n)+(m, n )  + Np-2 ' 
(m+) {(m+Jl  i 

with 

As any Hermitian matrix can be decomposed in this way (the Hermiticity condition 
for M k the Same as the reality condition for the Fourier modes +), the twisting 
leads to the standard Hermitian matrix model. Even the correct powers of N-( 'J2)  
occur in the coupling to ensure a non-trivial N + 03 limit 

While the untwisted model (38) can only distinguish the number of vertices of 
graphs by power counting of g, the matrix model is also known to distinguish thc 
genus of a graph by power counting of N .  This result is recovered if one calculates 
the (normalized) partition function for the topological action (30) on an arbitrary 
graph 1151: 

(44) 
1 exp- -x f .m . l . . n ,= -  h i  1 N 

N J 1 I1 1 Nrmk(1) ' E L , n , ~ = l  1 {m.,n.>=1 

As the rank of the intersection matrix I is twice the genus of the Feynman graph one 
obtains the standard result 

6. Conclusions 

It is shown how matrix models can be used to generate topological actions for graphs. 
These actions are related to central extensions of groups which sewe as index sets 
for the matrices. Restricting the possible structure of vertices allows the construction 
of more general topological actions which also distinguish classes of embeddings of 
the graphs in two-dimensional surfaces. 

A natural question which arises is the matter content of the twisted matrix 
models. This is currently under investigation. The given examples, especially the 
representation of the standard matrix model as a twisted model and the twisted 
version of the vertex models, might be helpful in clarifying this problem. 
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